Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity.

نویسندگان

  • E P Harrison
  • H Olcer
  • J C Lloyd
  • S P Long
  • C A Raines
چکیده

The response of net photosynthetic CO(2) uptake (A) to increasing leaf intercellular CO(2) concentration (c(i)) was determined in antisense Nicotiana tabacum plants, derived from six independent transformation lines, displaying a range of sedoheptulose-1, 7-bisphosphatase (SBPase) activities. The maximum in vivo ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation (V(c,max)) and RuBP regeneration (J(max)) rates were calculated from the steady-state measurements of the A to c(i) response curves. In plants with reductions in SBPase activity of between 9% and 60%, maximum RuBP regeneration capacity declined linearly (r(2)=0.79) and no significant change in apparent in vivo Rubisco activity (V(c,max)) was observed in these plants. No correlation between V(c,max) and a decrease in capacity for RuBP regeneration was observed (r(2)=0.14) in the SBPase antisense plants. These data demonstrate that small decreases in SBPase activity limit photosynthetic carbon assimilation by reducing the capacity for RuBP regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of chronic ozone and elevated atmospheric CO2 concentrations on ribulose-1,5-bisphosphate in soybean (Glycine max)

unit Rubisco binding site. Elevated CO2, in CF or O3-fumiRibulose-1,5-bisphosphate (RuBP) pool size was determined at regular intervals during the growing season to understand gated air, generally had no significant effect on RuBP pool size, thus mitigating the negative O3 effect. The RuBP pools the effects of tropospheric ozone concentrations, elevated atmospheric carbon dioxide concentrations...

متن کامل

Is there scope for improving balance between RuBP-regeneration and carboxylation capacities in wheat at elevated CO2?

Carboxylation and RuBP-regeneration capacities, which determine light-saturated photosynthetic rate, were analysed in leaves of spring wheat (Triticum aestivum L. cv. Minaret) grown under different atmospheric CO2 partial pressure (pCa) and N supply regimes. Capacities were estimated from a large number of gas exchange, Rubisco and ATP-synthase content measurements, and from these, the pCa at w...

متن کامل

Determining RuBisCO activation kinetics and other rate and equilibrium constants by simultaneous multiple non-linear regression of a kinetic model.

The forward and reverse rate constants involved in carbamylation, activation, carboxylation, and inhibition of D-ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) have been estimated by a new technique of simultaneous non-linear regression of a differential equation kinetic model to multiple experimental data. Parameters predicted by the model fitted to data from purified spinach enzyme...

متن کامل

Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum.

The balance between the capacities of RuBP (ribulose-1,5-bisphosphate) carboxylation (V(cmax)) and RuBP regeneration (expressed as the maximum electron transport rate, J(max)) determines the CO(2) dependence of the photosynthetic rate. As it has been suggested that this balance changes depending on the growth temperature, the hypothesis that the seasonal change in air temperature affects the ba...

متن کامل

The regulation of Rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato.

The temperature response of net CO(2) assimilation rate (A), the rate of whole-chain electron transport, the activity and activation state of Rubisco, and the pool sizes of ribulose-1,5-bisphosphate (RuBP) and 3-phosphoglyceric acid (PGA) were assessed in sweet potato (Ipomoea batatas) grown under greenhouse conditions. Above the thermal optimum of photosynthesis, the activation state of Rubisc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 52 362  شماره 

صفحات  -

تاریخ انتشار 2001